Beiträge

Carbon Management in Deutschland (II): Emissionen, Potenziale und Kosten für CCUS

In diesem zweiten Artikel der Serie über Kohlendioxidabscheidung, -nutzung und -speicherung (CCUS) in Deutschland analysiert carboneer die Emissionsprofile der deutschen Industrie und die damit verbundenen CCS-Potenziale und -Kosten. Lesen Sie den ersten Artikel über die Entwicklungen zu Carbon Management in Deutschland aus klimapolitischer Perspektive hier. Folgen Sie carboneer, um Zugriff auf alle Artikel zum historischen und politischen Kontext des Themas und zu Entwicklungen und Auswirkungen auf die Sektoren Stahl, Zement, Kalk, Chemikalien und Müllverbrennung zu haben.

Fokus auf industrielle Emissionen

CCUS-Aktivitäten im Energiesektor, insbesondere bei Stromerzeugung in Kohle- und Gaskraftwerken, werden höchstwahrscheinlich keinen Einzug in die Carbon Management Strategie (CMS) Deutschlands finden, da diese auf residuale, schwer zu dekarbonisierende und prozessbezogene Emissionen im Industriesektor ausgerichtet ist. Dennoch ist der Energiesektor der größte Verursacher von deutschen CO2-Emissionen: Im Jahr 2021 emittierte der Energiesektor 238 Mt CO2, was 35% der Gesamtemissionen entspricht. Die meisten Emissionen aus bestehenden Kohle- und Gaskraftwerken dürften jedoch durch erneuerbare Quellen oder die Nutzung von grünem Wasserstoff ersetzt werden, was den Anwendungsbereich für CCUS begrenzt. Dennoch hat auch dieser Sektor Potenzial, hauptsächlich durch CCUS-Anwendungen in Müll- und Biomassekraftwerken.

Der Schwerpunkt von CCUS-Aktivitäten wird daher auf dem Industriesektor liegen, dem zweitgrößten Verursacher von CO2-Emissionen in Deutschland. Im Jahr 2021 waren industrielle Anlagen für 168 Mt CO2-Emissionen verantwortlich, was 25% der Gesamtemissionen entspricht. Der größte Teil der industriellen Emissionen stammt von großen Anlagen, die dem EU Emissionshandelssystem unterliegen, sowie von Müllverbrennungsanlagen. Diese Anlagen emittierten im Jahr 2021 insgesamt 137,8 Mt CO2 (vgl. Abbildung 1), wobei die größten Anteile aus der Stahlproduktion (31,5 Mt), der Müllverbrennung (23,3 Mt), der Zementproduktion (20,1 Mt), dem Chemiesektor (16,9 Mt) und Kalkherstellung (6,4 Mt) stammen.

Figure 1: Anteile der CO2-Emissionen aus deutschen Industriesektoren (Anlagen im EU Emissionshandel) und aus der Müllverbrennung im Jahr 2021 (Quelle: carboneer, Datenquelle: DEHSt (2022), EEA (2022))

Das CCS-Potenzial im Industriesektor in Deutschland

Dreiviertel der Industrieemissionen stammen aus dem Energieverbrauch und sollen vor allem durch erneuerbare Energien und Energieeffizienzmaßnahmen reduziert werden. Etwa ein Viertel der industriellen Emissionen sind prozessbezogen und kommen aus der Verwendung kohlenstoffhaltiger Materialien in der Produktion. Prozessemissionen sind schwer zu vermeiden, und die fünf großen Klimaneutralitätsstudien für Deutschland (siehe Teil I) betonen die bedeutende Rolle von CCUS für die Emissionsminderung und von CO2-Recycling in der Industrie.

Bei der Berechnung des CCS-Potenzials ist zu beachten, dass nicht alle prozessbezogenen Emissionen abgeschieden werden können. Abhängig von Branche und der Verteilung der Emissionsquellen liegt der Anteil abscheidbarer Emissionen zwischen 45% in der Chemieindustrie und 90% für Müllverbrennungsanlagen. Nach dieser Methodik beläuft sich die Menge der technisch abscheidbaren CO2-Emissionen aus großen Industrie- und Müllverbrennungsanlagen in Deutschland auf 44,2 Mt (vgl. Abbildung 2).

Figure 2: CCS-Potenzial in ausgewählten Sektoren (Quelle: carboneer)

Unter Berücksichtigung der wirtschaftlichen Machbarkeit und alternativer technologischer Wege zur Dekarbonisierung schrumpft das letztlich relevante CCS-Potenzial noch weiter. Während Emissionen bei Herstellung von Kalk und Zement und bei der Müllverbrennung abgeschieden werden müssen, da es an technologischen Alternativen mangelt, könnte grüner Wasserstoff die primäre Dekarbonisierungsroute für die Stahlproduktion werden. Die Chemieindustrie wird weiterhin auf kohlenstoffhaltige Materialien angewiesen sein, um Grundchemikalien herzustellen, könnte jedoch auf biogene und atmosphärische Kohlentstoffquellen umstellen oder auf recyclierten Kohlenstoff aus anderen Industriesektoren setzen. Eine detailliertere Analyse der verschiedenen Sektoren und ihrer Attraktivität für CCUS wird in zukünftigen Artikeln dieser Serie folgen.

Infrastruktur und Kosten

Um den Transport von abgeschiedenem CO2 zu potenziellen Speicherstandorten oder Verbrauchern zu ermöglichen, ist geeignete Infrastruktur erforderlich. Die Entwicklung der CO2-Transportinfrastruktur ist entscheidend für den Erfolg von Carbon Management, und das Tempo ihrer Entwicklung kann den gesamten Fortschritt von CCUS-Anwendungen erheblich beeinflussen. Bis 2030 sind in Deutschland erste groß angelegte CO2-Transportinfrastrukturen erforderlich. Der Transportmodus hängt dabei von Menge und dem beabsichtigten Verwendungszweck des CO2 ab. Transport per Schiene, Lastwagen, Schiff und Pipelines können geeignete Optionen sein. Pipelines sind besonders für große Industriestandorte und CCUS-Cluster geeignet, wenn erhebliche Mengen CO2 über längere Strecken zu Speicheranlagen oder anderen Industriesenken transportiert werden müssen. Für dezentrale Standorte wie Kalk- und Zementwerke muss jedoch noch der effizienteste Umgang mit abgeschiedenen CO2 gefunden werden. Die lokale Herstellung synthetischer Kraftstoffe ist eine der möglichen Optionen. Ein landesweites CO2-Pipelinenetz, das alle Hauptemissionsquellen verbindet, wird sich in Deutschland voraussichtlich nicht entwickeln. Pipelines für große Industriecluster werden mittel- bis langfristig jedoch notwendig sein. Darüber hinaus arbeiten einige Öl- und Gasunternehmen bereits an der Entwicklung von Pipelines zum Export von in Deutschland abgeschiedenen CO2 zu Speicherstandorten in der Nordsee.

Die Kosten für CCS (einschließlich Abscheidung, Transport und Speicherung) sind über die verschiedenen Sektoren hinweg relativ homogen. Die derzeitige Nichtverfügbarkeit von Speicherkapazitäten in Deutschland macht eine Implementierung relativ teuer (vgl. Abbildung 3) im Vergleich zu einem Land wie dem Vereinigten Königreich, das besseren Zugang zu Speicherstandorten hat (z. B. in der Nordsee). Hohe Kosten von etwa 200 EUR/t CO2 für CCS-Anwendungen in Deutschland deuten bereits auf die Notwendigkeit von Anreiz- und Unterstützungsmechanismen hin, um das Carbon Management im industriellen Maßstab umzusetzen.

Figure 3: Durchschnittliche CCS-Kosten in EUR/t CO2 in Deutschland und im Vereinigten Königreich (Quelle: carboneer, Datenquelle: CATF, 2022)

Politiker in Deutschland müssen die Entscheidung treffen, ob erschöpfte Erdgasreservoire und saline Aquifere in Norddeutschland und unter der deutschen Nordsee geeignete CO2-Speicherstandorte sind oder ob der Export von CO2 durch internationale Kooperation und die Speicherung in der Nordsee und der Norwegischen See eine politisch akzeptablere Option darstellt.

In den kommenden Artikeln dieser Serie untersuchen wir die Attraktivität der oben genannten Industriesektoren für CCS-Anwendungen anhand von Indikatoren wie dem regulatorischen Rahmen, konkurrierenden Dekarbonisierungsoptionen und anderen sektorspezifischen Merkmalen.

Dieser Artikel basiert auf einer Studie von carboneer für den Trade Commissioner Service der Botschaft von Kanada in Deutschland.

Quellen:
CATF (2022) The cost of carbon capture and storage in Europe. Available at: https://​www.catf.us​/​ccs-​cost-​tool/​ (Accessed: 27 March 2023).

DEHSt (2022) Treibhausgasemissionen 2021: Emissionshandelspflichtige stationäre Anlagen und Luftverkehr in Deutschland (VET-Bericht 2021). Available at: https://​www.dehst.de​/​SharedDocs/​downloads/​DE/​publikationen/​VET-​Bericht-​2021.pdf​?​__blob=​publicationFile&​v=​7 (Accessed: 27 March 2023).

EEA (2022) Industrial Reporting database, May 2022, 7 March. Available at: https://​www.eea.europa.eu​/​data-​and-​maps/​data/​industrial-​reporting-​under-​the-​industrial-​6 (Accessed: 27 March 2023).

Welches Potenzial haben Negativemissionen in Deutschland?

Durch das aktualisierte deutsche Klimaschutzgesetz werden Negativemissionstechnologien (NETs) und Kohlenstoffentfernung aus der Atmosphäre notwendig (Lesen Sie als Hintegrund unseren vorangegangenen Artikel). Hier wollen wir die Frage klären, welche Lösungen dazu in Deutschland eingesetzt werden können und welches Potenzial sie haben. Die wichtigste Erkenntnis: Sowohl naturbasierte als auch technologische Lösungen zur Kohlenstoffentfernung werden im Megatonnen-Maßstab notwendig sein.

Neue Studien bestätigen Notwendigkeit der Kohlenstoffentfernung

Im Oktober 2021 wurden zwei neue Studien veröffentlicht, die Wege aufzeigen, wie Deutschland bis 2045 klimaneutral werden kann. Die dena-Leitstudie „Aufbruch Klimaneutralität“ der Deutschen Energie-Agentur und der Ariadne-Bericht im Rahmen des vom Bundesministerium für Bildung und Forschung geförderten Kopernikus-Projekts machen deutlich, dass erhebliche Mengen an negativen Emissionen erforderlich sind, um schwierig zu reduzierende Emissionen aus Landnutzung, Landwirtschaft oder Industrie auszugleichen. Abbildung 1 zeigt den jährlichen Bedarf an negativen Emissionen in Deutschland im Jahr 2045 unter Einbeziehung der Daten aus den neuesten Studien.

Abbildung 1: Erforderliche jährliche negative Emissionen in MtCO2-äq im Jahr 2045 in Deutschland (Quelle: cr.hub)

Die neuesten Zahlen sind mit denen aus früheren Studien vergleichbar. Allerdings herrscht noch keine Einigkeit darüber, wie viel Kohlenstoff Deutschland aus der Atmosphäre entfernen muss. So liegen die jährlichen Negativemissionen die ab 2045 notwendig sind zwischen 40 und 100 MtCO2-äq. Im Durchschnitt deuten die Studien auf einen jährlichen Bedarf an Kohlenstoffentfernung von etwas mehr als 74 Mt CO2-äq hin.

Nicht nur die wissenschaftliche Gemeinschaft betont die Notwendigkeit negativer Emissionen, auch Industriegruppen und -verbände nehmen das Thema zunehmend ernst. In einem kürzlich veröffentlichten offenen Brief an die neue Bundesregierung haben eine Reihe von Großunternehmen unter der Stiftung 2 Grad die Notwendigkeit betont, einen politischen Rahmen für ein aktives Management des Kohlenstoffkreislaufs zu schaffen und mit der Entwicklung von Lösungen zur CO2-Abscheidung und -Speicherung (CCS) zu beginnen.

Welche Technologien für negative Emissionen werden benötigt?

Grob können wir zwischen naturbasierten und technologischen Lösungen zur Kohlenstoffentfernung unterscheiden. Die vorherrschende naturbasierte Lösung ist (Wieder-)aufforstung, aber auch die Renaturierung von Mooren, die verstärkte Bindung von Kohlenstoff in Böden durch veränderte landwirtschaftliche Praktiken oder auch der Anbau von Seetang im Meer fallen in diese Kategorie.

Auf der technologischen Seite liegt der Schwerpunkt derzeit auf der direkten Abscheidung und Speicherung von CO2 aus der Luft DACCS (Direct Air Capturing and Carbon Storage). In Frage kommen auch Hybridlösungen wie Bioenergie mit Kohlenstoffabscheidung und -speicherung (BECCS) oder die Herstellung von Biokohle, bei welchen Biomasse verwendet wird und ein technisches Verfahren zur Abscheidung oder Bindung des Kohlenstoffs in einer nicht reaktiven Form zum Einsatz kommt.

Wir erläutern und vergleichen hier eine Reihe dieser NETs. Abbildung 2 zeigt, welche der verschiedenen NETs auf der Grundlage ausgewählter Studien dazu beitragen können, Deutschland bis 2045 klimaneutral zu machen. Die Antwort auf die Frage, welche NETs und Lösungen zur Kohlenstoffentfernung benötigt werden, ist simpel: alle!

Abbildung 2: Vergleich der jährlichen Kohlenstoffentfernung aus der Atmosphäre in MtCO2-äq verschiedener NETs in aktuellen Studien in Deutschland im Jahr 2045 (Quelle: cr.hub)

Die unterschiedlichen naturbasierten Lösungen sind in Abbildung 2 in der Kategorie Landnutzung, Landnutzungsänderung und Forstwirtschaft (LULUCF) zusammengefasst, die in den meisten Studien den größten Anteil der notwendigen Kohlenstoffentfernung ausmacht und oft nicht detaillierter betrachtet wird.

Darüber hinaus gehen die meisten Studien davon aus, dass erhebliche Kapazitäten technischer Lösungen, wie BECCS und DACCS erforderlich sind. Insbesondere für den Fall, dass naturbasierte Lösungen nicht in der Lage sind, diese Größenordnung von Kohlenstoffentfernung zu liefern, sind technische Lösungen erforderlich.

Exotischere Lösungen für Carbon Removal wie die Beschleunigte Verwitterung stehen kaum im Vordergrund. Die Verwendung von Kohlendioxid aus der Atmosphäre als Ausgangsstoff für die Herstellung von grünem Naphtha oder Methanol und für langlebige Kunststoffprodukte liegt im Bereich von 10 MtCO2-eq. Es ist erwähnenswert, dass die verschiedenen Studien nicht unbedingt über das Potenzial oder die Kapazität der verschiedenen NETs übereinstimmen. Dies liegt auch daran, dass nicht alle Studien die gesamte Bandbreite an möglichen NETs berücksichtigen oder einen speziellen Fokus auf bestimmte Technologien und Senken legen.

Und nur zur Erinnerung: Im Jahr 2018 hat der LULUCF-Sektor in Deutschland nur 18 MtCO2-äq an negativen Emissionen geliefert (Quelle: dena). Das bedeutet, dass innerhalb der nächsten 23 Jahre eine Verdopplung bis Verdreifachung der jährlichen Kohlenstoffsenkenkapazität durch Wälder, Moorrenaturierung und Kohlenstoffbindung im Boden erreicht werden muss. Andernfalls wird die Abhängigkeit von bislang nicht skalierteten, technischen Lösungen noch größer.  

Potenzial negativer Emissionen in Deutschland

Wie oben dargestellt, gibt es keinen Königsweg oder eine NET, um den überschüssigen Kohlenstoff aus der Atmosphäre zu entfernen und Deutschland bis 2045 wirklich klimaneutral zu machen. Vielmehr werden alle Lösungen und Technologien benötigt. Um einen besseren Überblick darüber zu erhalten, wie ein solches Portfolio der Kohlenstoffentfernung auf Landesebene aussehen kann, haben wir die Zahlen aus dem Ariadne-Projektbericht verwendet und die Potenziale der verschiedenen NETs verglichen. Abbildung 3 zeigt die Anteile der verschiedenen NETs in Deutschland im Jahr 2045 gemäß dem Bericht des Ariadne-Projekts mit einem Gesamtpotenzial von fast 110 MtCO2-eq.

Abbildung 3: Potenzieller Anteil verschiedener NETs in Deutschland bis 2045 nach Ariadne-Projekt, hellgrüner Keil repräsentiert LULUCF (Quelle: cr.hub)

Der hellgrüne Keil, der 46 Prozent des gesamten Potenzials negativer Emissionen ausmacht, repräsentiert den LULUCF-Sektor. Dieser lässt sich unterteilen in Waldsenken ((Wieder-)aufforstung), Kohlenstoffbindung im Boden und Kohlenstoffspeicherung durch veränderte landwirtschaftliche Praktiken wie Agroforstwirtschaft. Technologische Lösungen wie BECCS und DACCS machen 37 Prozent des gesamten Potenzials für Carbon Removal aus, Biokohle und verbesserte Verwitterung insgesamt 17 Prozent.

Der Weg in die Zukunft

Die jüngsten Ergebnisse der Klima- und Energiesystemmodellierung verschiedener Forschungsgruppen sind eindeutig: Die Entfernung von Kohlenstoffdioxid aus der Atmosphäre spielt eine wichtige Rolle bei der Erreichung der deutschen Klimaziele. Im Jahr 2045 muss die Kapazität vorhanden sein, 10 Prozent der Treibhausgasemissionen, die Deutschland im Jahr 2020 emittiert hat, aus der Atmosphäre zu entfernen.

Das ist kein leichtes Unterfangen. Die Kapazität zur Kohlenstoffentfernung durch den LULUCF-Sektor beträgt heute nur ein Fünftel bis ein Viertel der in 2045 benötigten Negativemissionen. Weiterhin könnte der Klimawandel die Kohlenstoffspeicherkapazität naturbasierter Lösungen in den kommenden Jahrzehnten weiter mindern. Wenn natürliche Kohlenstoffsenken nicht ausreichen, werden technische und hybride Carbon Removal Lösungen wie BECCS, DACCS oder Biokohle wichtiger.

Die jüngsten Studien, die in diesem Artikel betrachtet werden, kommen zu unterschiedlichen Zahlen für die benötigten Kapazitäten und Potenziale der verschiedenen NETs, wie Abbildung 2 zeigt. Es ist wichtig, eine strukturierte Diskussion darüber zu beginnen, wie die Studien zu den Potenzialen und Kapazitäten der verschiedenen NETs kommen. Damit kann die Wissenschaft ein Verständnis für die Annahmen und die Möglichkeit für einen ganzheitlichen Modellierungsrahmen für negative Emissionen entwickeln.

Auf politischer Ebene sind die Ausarbeitung eines Rahmens für ein aktives Management des Kohlenstoffkreislaufs (Active Carbon Management) zusammen mit Maßnahmen zum Wissensaufbau und der Wiederaufnahme eines öffentlichen Dialogs über Carbon Removal und CCS als notwendige und wichtige Bestandteile auf dem Weg zur Klimaneutralität die wichtigsten Schritte. Darüber hinaus muss ein Prozess zur Überarbeitung der geltenden Vorschriften für die CO2-Speicherung und den CO2-Transport, möglicherweise grenzüberschreitend in einem europäischen Kontext, eingeleitet werden. Die deutschen Klimaziele sollten ebenfalls zwischen echter Emissionsreduzierung und Kohlenstoffentfernung unterscheiden um Transparenz und Nachverfolgung zu ermöglichen (wie bereits in Großbritannien und Schweden begonnen).

Die Schlussfolgerung für den Privatsektor: Ein neuer Wirtschaftszweig entsteht und er muss schnell ausgebaut werden. Vorausschauende Unternehmen und Branchen können an der Spitze dieser Entwicklung stehen, wenn sie die Gelegenheit ergreifen. Dies gilt für Technologieanbieter, Projektentwickler und emittierende Industrien, die NETs bereitstellen und nutzen können. Aber auch Unternehmen mit Klimazielen können einen glaubwürdigeren Beitrag zum Klimaschutz leisten, indem sie einen Teil ihrer schwer zu reduzierenden Emissionen durch negative Emissionen neutralisieren, statt weniger dauerhafte und weniger glaubwürdige Kompensationsprojekte zu nutzen.

Wir können Sie bei der Strategieentwicklung rund um Ihre Klimaziele und die Rolle von Negativemissionen unterstützen, sowie Ihnen Einblicke in diese neue Branche und den Markt liefern. Kontaktieren Sie uns gerne für weiterführende Informationen.

Neues deutsches Klimaziel nur durch negative Emissionen erreichbar?

Nach dem Urteil des Bundesverfassungsgerichts vom April 2021 musste die Bundesregierung das deutsche Klimaschutzgesetz nachschärfen. Laut überarbeitetem Gesetz muss Deutschland bereits im Jahr 2045 klimaneutral und bis 2050 treibhausgasnegativ sein. Diese höheren Klimaambitionen bedeuten auch eine frühere Nutzung von erheblichen Mengen an negativen Emissionen. Welche Änderungen gab es in der Klimagesetzgebung und was sagen die jüngsten Szenarien zu Carbon Removal für Deutschland?

Wie in unserem letzten Artikel über die globale Dimension und Notwendigkeit negativer Emissionen versprochen, wollen wir dieses Mal einen genaueren Blick auf Deutschland werfen. Das Industrieland ist bei der Dekarbonisierung seines Energiesystems sowohl bezüglich Geschwindigkeit als auch Umfang weltweit mit führend. Erneuerbare Energien machen bereits 45-50 Prozent des deutschen Stromverbrauchs aus. Im Jahr 2030 soll der Anteil 65 Prozent erreichen.

Aktualisiertes Klimaziel fordert Klimaneutralität bis 2045

Das deutsche Klimaschutzgesetz wurde im Juni 2021 aktualisiert, nachdem das Bundesverfassungsgericht Änderungen und ambitioniertere Maßnahmen gefordert hatte. Infolgedessen verschärfte die damalige Regierung die bisherigen Klimaziele hin zur Klima- oder Treibhausgasneutralität bis 2045. Ab 2050 soll Deutschland sogar treibhausgasnegativ sein. Abbildung 1 zeigt die historischen Emissionen, die im neuen Gesetz festgelegten Ziele und die möglichen netto-negativen Emissionen im Jahr 2050 gemäß der Studie Klimaneutrales Deutschland 2045 (Datenquellen: BMU, UBA, Agora Energiewende).

Abbildung 1: Historische Treibhausgasemissionen und Ziele für Deutschland in Mt CO2äq nach dem neuen Klimagesetz und Abschätzungen für netto-negative Emissionen durch Agora Energiewende (Quelle: cr.hub)

Für das Jahr 2021 rechnet Agora Energiewende mit dem stärksten jährlichen Anstieg der Emissionen seit 1990, mit einem Plus von knapp 50 Mt (Quelle: Agora Energiewende). Damit könnten die Emissionen in diesem Jahr wieder auf dem Niveau von 2019 vor Corona liegen. Die Emissionsreduktion um 40 Prozent gegenüber 1990, welche in 2020 knapp erreicht wurde, wäre damit wieder obsolet.

Sind negative Emissionen Teil der deutschen Klimastrategie? 

Noch vor einigen Jahren waren negative Emissionen oder CCS nicht Teil der Diskussion um die Klima- und Emissionsminderungsstrategien in Deutschland, zumindest nicht im politischen und auch nur bedingt im wissenschaftlichen Kontext. Diese Sichtweise hat sich jedoch verändert:

  1. Es wird immer deutlicher, dass in schwer zu dekarbonisierenden Sektoren (wie Industrie und Landwirtschaft) auch nach starker Emissionsminderung nicht vermeidbare Restemissionen bestehen bleiben werden.
  1. In Sektoren außerhalb des Stromsektors verläuft die Dekarbonisierung schleppend. Insbesondere die Sektoren Gebäude und Verkehr hinken hinterher. Sie könnten nach heutigem Stand nicht einmal die nötigen Emissionseinsparungen erbringen, um die alten und weniger ambitionierten Klimaziele zu erreichen.
  1. Die Klimaschutzbestrebungen sind gewachsen, da die Auswirkungen eines sich erwärmenden Planeten bereits deutlich sichtbar sind und auch von Seiten der Zivilgesellschaft stärkeres Handel gefordert wird. Auf EU-Ebene wurde das neue Ziel einer 55-prozentigen Emissionsreduzierung bis 2030 im Vergleich zu 1990 vereinbart, und Deutschland zog mit seinem neuen Klimagesetz nach.

Aus insbesondere diesen Gründen nehmen negative Emissionen in den jüngsten Szenarien und Studien zur Erreichung der deutschen Klimaziele wieder mehr Raum ein. Im Klimaschutzgesetz werden negativen Emissionen jedoch nur implizit im Bereich Landnutzung, Landnutzungsänderung und Forstwirtschaft (LULUCF) erwähnt. Konkrete Ausbauziele für Technologien zur Generierung negativer Emissionen fehlen weiterhin.

Wie viele negative Emissionen braucht Deutschland?

In dieser Analyse präsentieren wir die Ergebnisse und Implikationen von drei detaillierten Veröffentlichungen der vergangenen drei Monate: die Studie Klimaneutrales Deutschland 2045 von Agora Energiewende, die Langfristszenarien für die Transformation des Energiesystems in Deutschland des Fraunhofer ISI im Auftrag des Bundeswirtschaftsministeriums und das Arbeitspapier „Wissensstand zu CO2-Entnahmen“ des Mercator Research Institute on Global Commons and Climate Change (MCC).

In Abbildung 2 ist der prognostizierte Bedarf an negativen Emissionen gemäß der drei genannten Veröffentlichungen in Deutschland dargestellt. Alle Studien stimmen darin überein, dass in Deutschland bis 2050 negative Emissionen in der Größenordnung von mehreren zehn bis hundert Millionen Tonnen CO2äq benötigt werden, um die nationalen Klimaziele zu erreichen.

Abbildung 2: Höhe der benötigten negativen Emissionen inklusive LULUCF-Sektor in Deutschland ab 2030 in Mt CO2äq (fehlende Zahlen in Studien wurden linear interpoliert) (Quelle: cr.hub)

Im Jahr 2020 emittierte Deutschland nach bisherigen Schätzungen etwa 740 Mt an Treibhausgasen. Wie Abbildung 2 zeigt, liegen die notwendigen negativen Emissionen zum Zeitpunkt der angestrebten Klimaneutralität in 2045 bei 67 bis 100 Mt CO2äq, also zwischen 9 und 13 Prozent der Emissionen in 2020. Die Skalierung von natur-basierten und technologischen Lösungen und Technologien ist bereits ab heute und in diesem Jahrzehnt erforderlich. Momentan ist der Einsatz von Technologien zur Entnahme von CO2 aus der Atmosphäre vergleichsweise teuer. Zur Senkung dieser Kosten bedarf es massiver Investitionen in die technische und organisatorische Infrastruktur, und umfassender politischer und ökonomischer Förderung.

Das neue deutsche Klimaschutzgesetz berücksichtigt negative Emissionen bereits zu einem gewissen Grad. Es zielt auf einen Beitrag des LULUCF Sektors von 25, 35 und 40 Mt in den Jahren 2030, 2040 bzw. 2045. Allerdings leidet Carbon Removal in der Landnutzung und der Forstwirtschaft unter teilweise geringer Dauerhaftigkeit der Entnahme aus der Atmosphäre, schwieriger Bilanzierung und möglicher Reversibilität durch falsch ausgerichtete Managementpraktiken oder natürliche Ereignisse wie Waldbrände.

Alle drei Studien legen dar, dass zusätzlich zu den negativen Emissionen aus dem LULUCF Sektor als Teil der natur-basierten Carbon Removal-Lösungen voraussichtlich auch technologische Lösungen für negative Emissionen benötigt werden. In einem kommenden Artikel werden wir tiefer in die vorgeschlagenen Arten von Negativemissionstechnologien (NETs) zur Erreichung der deutschen Klimaziele eintauchen und das Potenzial einiger dieser Lösungen aufzeigen.

Um mehr über Carbon Removal und negative Emissionen zu erfahren, folgen Sie uns auf Twitter oder LinkedIn, abonnieren Sie unseren Newsletter oder treten direkt mit uns in Kontakt.